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Abstract
The role of coupling between two quantum wells in TE optical modal gain
is analysed within the self-consistent solution of the Poisson, Schrödinger
and 4 × 4 Luttinger–Kohn equations. The many-body effects of bandgap
renormalization, coulombic scattering interactions and a non-Markovian
distribution are also included. The analysis is performed for a 1.55 µm
InGaAsP/InP lattice-matched system grown in the [001] direction. It shows
that electrostatics significantly changes the modal gain in both amplitude and
spectrum. The gain amplitude is larger when electrostatic effects are included
due to better charge localization in the wells. The gain spectrum also changes
due to the modification of the heterostructure potential and hence different
coupling between the wells.

Semiconductor lasers based on quantum wells (QWs) are playing an important role in today’s
optoelectronic applications. Their properties are constantly improved. Many of those
improvements are linked to fundamental physical properties of those devices (see e.g. [1]).
One of the physical parameters which significantly affect operation of QW-based devices is
coupling between wells. For a double-quantum-well (DQW) system, when the separation
barrier is thin enough, coupling between the two wells becomes important [2, 3]. The effect
of well coupling on the optical modal gain of multi-QW lasers has been studied by Akhtar
et al [2], and Sarmento [4] using the parabolic band model. It is known [5], however, that in
QWs the gain peak determined with the band-mixing effects included is significantly reduced
(1.5–2-fold) when compared with the conventional parabolic band model.

Electrostatic self-consistency has also the well known effect of altering the potential pro-
file and the distribution of carriers in QW heterostructures [6,7]. Studies on the consequences
of this on the optical gain of single-quantum-well (SQW) lasers have been performed [7]. The
effects noted are mainly due to the change in charge distribution (although it must be kept in
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mind that Seki et al [7] also incorporated a change in the dephasing time which we will not
do in order to examine only electrostatic effects). Since electrostatic self-consistency changes
the potential profile, there will also be a change in the well coupling effects.

In this Letter we report on the study of well coupling effects and electrostatic effects on
the TE modal gain in a DQW laser. This will be done by calculating the TE modal gain versus
frequency at various barrier separation widths with and without electrostatic self-consistency.
We describe the various calculations and methods required to arrive at a final gain expression
incorporating these effects.

In order to calculate the electrostatic effect on the heterostructure potential energy, we must
solve for the conduction and valence wavefunctions self-consistently with Poisson’s equation
(in this paper, the structure is undoped) [6, 8, 9].

d

dz

[
ε(z)

d

dz
φ(z)

]
= −e(ρHH(z) + ρLH(z)− ρc(z)) (1)

where e is the fundamental charge, ε(z) is the position-dependent permittivity, n(z), p(z) are
the position-dependent electron and hole band density distributions respectively. The function
φ(z)is the electrostatic potential.

These density distributions are [6]
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The symbol α represents the conduction (c), heavy-hole (HH) and light-hole (LH) bands
and n is an index over the subbands. Ef

c is the conduction band Fermi-level andEf
HH = Ef

LH is
the valence band Fermi-level. These are determined by standard methods [1]. The symbol kB

is Boltzmann’s constant, T is temperature, m̄∗
α is the average effective mass for the particular

band, which will be taken as approximately the effective mass in the wells since most of the
carriers are confined there. Fαn (z) and Eαn are the respective envelope eigenfunctions and
eigenvalues of the various subbands in the parabolic approximation at the band-edge.

Having expressions for the wavefunctions and electrostatic potential, self-consistency
iteration such as Stern’s ‘fixed convergence factor’ method [6, 9] is then used to calculate the
change in the heterostructure potential.

For calculating optical gain, the conduction band envelope functions are once again
determined using the parabolic effective mass equation. The valence band envelope functions,
however, are now determined by using a more accurate model based on the 4 × 4 Luttinger–
Kohn (LK) Hamiltonian [1,3]. The reason for using two approximations for the valence band
is that the parabolic method is significantly faster, but only gives accurate results near the band-
edge for the first few subbands. This turns out to be sufficient to calculate the electrostatic
effects, but not for the overlap integrals required in the gain calculations.

Our gain calculations incorporate bandgap renormalization, coulombic and non-
Markovian effects [7, 10–14]. To incorporate bandgap renormalization, we use the
phenomenological approximation �E � βN1/3. Here N is the average carrier density in
the wells (electrons or holes) and β is a bandgap renormalization coefficient chosen to equal
the shift found by a more detailed calculation [10, 12] at a specific concentration.

The coulombic and non-Markovian effects are incorporated by using the gain equation [14]

g(E)= Eµc
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where E = h̄ω is the photon energy. The details of this equation can be found in [14].



Letter to the Editor L85

Figure 1. The heterostructure potential versus position for a separation barrier width of 4 nm and
an average well carrier density 4.5 × 1018 cm−3.

The structure simulated consists of two 5 nm QWs with a varying separation barrier and
500 nm fixed barriers on either side. All barriers are InGaAsP with bandgap 1.1 µm. The
cladding and substrate surrounding the structure are InP. The wells and barriers are InGaAsP
and lattice matched to InP so there is no strain in the system. The composition of the wells
is chosen such that maximum gain occurs around 1.55 µm (this is an approximate relation
because the energy at maximum gain will change depending on carrier density and separation
barrier width, see figure 3). All layers are assumed to be grown in the [001] direction. Standard
material parameters and bandgap calculations were used [15].

The wavefunctions in the parabolic approximation and Poisson’s equation were solved
numerically using a finite difference method. For the LK Hamiltonian approximation, a
plane wave expansion method was used [3]. We experimented with using the parabolic and
LK approximations for the valence band to calculate the electrostatic effects. Very little
difference was found between them with respect to the modification to the heterostructure.
The parabolic approximation, however, was of the order of one hundred times faster than the
LK approximation in terms of CPU time.

Figure 1 shows how self-consistency modifies the original heterostructure potential.
Inclusion of electrostatic effects modifies the system so as to move it closer to local charge
electroneutrality [7]. This modification causes more conduction electrons and fewer holes
to be confined within the wells (figure 2). Since conduction electrons are normally the
limiting factor to gain, the higher confinement of electrons in the wells results in larger gain
amplitude (figures 3, 4). Electrostatic effects also cause the gain spectrum to change. As
noted by others [2, 3] varying separation barrier widths will change the relative strength of
each subband transition. Self-consistency modifies the potential profile and consequently the
relative transition strengths. Therefore the gain spectrum will depend on the well separation and
the electrostatics as demonstrated in figure 3. In figure 4 the maximum gain is significantly
larger for the electrostatic case for most barrier widths. As well, the barrier separation for
minimum gain is smaller when electrostatics is included. This can be explained by figure 3,
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Figure 2. The density distribution of electrons and holes versus position for a separation barrier
width of 4 nm and an average well carrier density 4.5 × 1018 cm−3.

Figure 3. The TE modal gain versus photon energy for an average well carrier density
4.5 × 1018 cm−3.

where we see that the dominant transition has changed already between the 1.0 and 2.0 nm
barriers when electrostatics is included, but it has not yet if electrostatics is not included.

In conclusion, we have found that electrostatic effects can significantly modify the potential
profile of the DQW laser. This causes changes in the gain in two ways. First, it increases
the conduction electron density and reduces the hole density in the active region, which
increases the gain amplitude. Second, the spectral properties will be modified since a change
in the profile changes the relative strength of each subband transition. These effects have a
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Figure 4. The maximum modal gain versus separation barrier width for two different carrier
densities.

large practical importance. The energy at maximum gain is altered, which is an important
consideration in the design of an efficient laser. Also, we can determine the minimum
separation barrier width above which the gain will remain relatively uniform. An accurate
model for a DQW laser should therefore take electrostatics into account. During the course
of the calculations, it was also found that it is not necessary to have a rigorous model for the
valence bands to determine the electrostatic modifications of the heterostructure. A parabolic
approximation for all bands is sufficient and saves considerable computation time.
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